for your iPhone
for your iPad
IndyCar

IndyCar Links

2014 Schedule

2014 IndyCar Rules

2014 Indy Lights Rules

2014 Pro Mazda Rules

2014 USF2000 Rules

2014 Drug Policy

2014 Teams

2014 Scanner Freq

Race Car Comparison

Lap Time Comparison

History CART/IRL Split


2014 Standings
After Toronto
Driver Standings

Driver Standings
1 Helio Castroneves 533
2 Will Power 520
3 Ryan Hunter-Reay 464
4 Simon Pagenaud 462
5 Juan Pablo Montoya 428
6 Scott Dixon 387
7 Carlos Munoz (R) 384
8 Tony Kanaan 380
9 Marco Andretti 375
10 Sebastien Bourdais 358
11 Ryan Briscoe 344
12 James Hinchcliffe 330
13 Charlie Kimball 317
14 Justin Wilson 311
15 Mikhail Aleshin 298
16 Josef Newgarden 288
17 Jack Hawksworth (R) 287
18 Graham Rahal 266
19 Carlos Huertas (R) 265
20 Takuma Sato 234
21 Sebastian Saavedra 229
22 Mike Conway 218
23 Ed Carpenter 168
24 Oriol Servia 88
25 Kurt Busch (R) 80
26 JR Hildebrand 66
27 Sage Karam (R) 57
28 Luca Filippi 46
29 James Davison (R) 34
30 Jacques Villeneuve 29
31 Alex Tagliani 28
32 Townsend Bell 22
33 Pippa Mann 21
34 Martin Plowman (R) 18
35 Buddy Lazier 11
36 Franck Montagny 8

Rookie of the Year
1 Carlos Munoz 384
2 Mikhail Aleshin 298
3 Jack Hawksworth 287
4 Carlos Huertas 265
5 Kurt Busch 80
6 Sage Karam 57
7 James Davison 34
8 Martin Plowman 18

Wins
T1 Ryan Hunter-Reay 3
T2 Will Power 2
T2 Simon Pagenaud 2
T2 Mike Conway 2
T5 Helio Castroneves 1
T5 Carlos Huertas 1
T5 Ed Carpenter 1
T5 Juan Pablo Montoya 1
T5 Sebastien Bourdais 1

Podium Finishes
T1 Will Power 6
T1 Helio Castroneves 6
3 Ryan Hunter-Reay 5
4 Tony Kanaan 4
T5 Carlos Munoz 3
T5 Juan Pablo Montoya 3
T7 Marco Andretti 2
T7 Simon Pagenaud 2
T7 Mike Conway 2
T10 Carlos Huertas 1
T10 Scott Dixon 1
T10 Josef Newgarden 1
T10 Graham Rahal 1
T10 Charlie Kimball 1
T10 Ed Carpenter 1
T10 Jack Hawksworth 1
T10 Mikhail Aleshin 1
T10 Sebastien Bourdais 1
Manufacturer Standings:
1 Chevrolet 2056
2 Honda 1042

Lap Leaders:
1 Will Power 353
2 Tony Kanaan 326
3 Helio Castroneves 241
4 Ryan Hunter-Reay 167
5 Ed Carpenter 116
6 Juan Pablo Montoya 74
7 Takuma Sato 67
8 Sebastien Bourdais 60
9 Simon Pagenaud 59
10 James Hinchcliffe 56
11 Scott Dixon 44
12 Jack Hawksworth 32
13 Justin Wilson 25
14 Marco Andretti 22
T15 Mike Conway 15
T15 Josef Newgarden 15
17 Sebastian Saavedra 14
18 Graham Rahal 10
T19 Oriol Servia 7
T19 Carlos Huertas 7
21 Ryan Briscoe 5
22 Mikhail Aleshin 4
23 Alex Tagliani 3

Entrant Points
Pos. # Entrant Points
1 3 Team Penske 533
2 12 Team Penske 520
3 28 Andretti Autosport 464
4 77 Schmidt Peterson Hamilton Motorsports 462
5 2 Penske Motorsports 428
6 9 Target Chip Ganassi Racing 387
7 20 Ed Carpenter Racing 386
8 34 Andretti Autosport/HVM 384
9 10 Target Chip Ganassi Racing 380
10 25 Andretti Autosport 375
11 11 KVSH Racing 358
12 8 NTT Data Chip Ganassi Racing 344
13 27 Andretti Autosport 330
14 83 Novo Nordisk Chip Ganassi Racing 317
15 19 Dale Coyne Racing 311
16 7 Schmidt PetersonMotorsports 298
17 67 Sarah Fisher Hartman Racing 288
18 98 BHA/BBM with Curb-Agajanian 287
19 15 Rahal Letterman Lanigan Racing 266
20 18 Dale Coyne Racing 265
21 14 A.J. Foyt Racing 234
22 17 KV/AFS Racing 229
23 16 Rahal Letterman Lanigan Racing 134
24 26 Andretti Autosport 88
25 21 Ed Carpenter Racing 66
26 22 Dreyer and Reinbold 57
27 33 KV Racing Technology 34
28 5 Schmidt Peterson Motorsports 29
29 68 Sarah Fisher Hartman Racing 28
30 6 KV Racing Technology 22
31 63 Dale Coyne Racing 21
32 41 A.J. Foyt Racing 18
33 91 Lazier Partners Racing 11

Finishing Average
1 Helio Castroneves 5.38
T2 Kurt Busch 6.00
T2 Will Power 6.00
4 Simon Pagenaud 6.92
5 Sage Karam 9.00
6 Scott Dixon 9.61
7 J.R. Hildebrand 10.00
8 Tony Kanaan 10.23
9 Ryan Hunter-Reay 10.38
T10 Juan Pablo Montoya 11.15
T10 Sebastien Bourdais 11.15
12 Ryan Briscoe 11.38
13 Justin Wilson 11.92
14 Carlos Munoz 12.00
15 James Hinchcliffe 12.46
16 Oriol Servia 12.5
17 Marco Andretti 12.69
18 Ed Carpenter 12.75
19 Alex Tagliani 13.0
20 Charlie Kimball 13.23
21 Takuma Sato 13.46
22 Mikhail Aleshin 13.61
23 Jacques Villeneuve 14.0
24 Mike Conway 14.66
25 Graham Rahal 15.0
26 James Davison 16.0
27 Carlos Huertas 16.07
28 Josef Newgarden 16.92
29 Sebastian Saavedra 17.0
30 Jack Hawksworth 17.16
31 Luca Filippi 18.50
32 Martin Plowman 20.5
33 Franck Montagny 22.0
34 Pippa Mann 24.0
35 Townsend Bell 25.0
36 Buddy Lazier 32.0


Pole Positions
T1 Takuma Sato 2
T1 Will Power 2
T1 Helio Castroneves 2
T4 Ryan Hunter-Reay 1
T4 Sebastian Saavedra 1
T4 Ed Carpenter 1
T4 Simon Pagenaud 1
T4 Juan Pablo Montoya 1
T4 Scott Dixon 1
T4 Sebastien Bourdais 1

Appearances in the Firestone Fast Six
1 Ryan Hunter-Reay 5
T2 Helio Castroneves 4
T2 Will Power 4
T3 James Hinchcliffe 3
T3 Scott Dixon 3
T3 Jack Hawksworth 3
T7 Simon Pagenaud 2
T7 Josef Newgarden 2
T7 Tony Kanaan 2
T7 Sebastien Bourdais 2
T11 Takuma Sato 1
T11 Marco Andretti 1
T11 Sebastian Saavedra 1
T11 Mike Conway 1
T11 Juan Pablo Montoya 1
T11 Ryan Briscoe 1
T11 Luca Filippi 1

Qualifying Average
1 Helio Castroneves 5.53
2 James Hinchcliffe 6.90
3 Ed Carpenter 7.00
4 Luca Filippi 7.66
5 Simon Pagenaud 7.69
6 Will Power 7.76
7 Scott Dixon 8.84
8 J.R. Hildebrand 9.00
9 Sebastien Bourdais 9.76
10 Carlos Munoz 10.3
11 Tony Kanaan 10.53
12 Ryan Hunter-Reay 10.61
13 Juan Pablo Montoya 10.84
14 Takuma Sato 11.69
15 Kurt Busch 12.0
16 Marco Andretti 12.61
T17 Josef Newgarden 12.92
T17 Ryan Briscoe 12.92
19 Justin Wilson 13.0
20 Jack Hawksworth 14.5
21 Mike Conway 14.66
22 Mikhail Aleshin 14.84
23 Graham Rahal 15.38
24 Sebastian Saavedra 16.53
25 Charlie Kimball 17.15
26 Carlos Huertas 17.84
27 Franck Montagny 21.0
28 Pippa Mann 22.0
29 Alex Tagliani 24.0
30 Martin Plowman 24.5
31 Townsend Bell 25.0
32 Jacques Villeneuve 27.0
33 James Davison 28.0
34 Sage Karam 31.0
35 Buddy Lazier 33.0
The Delta Wing - Nose to Tail

Part 4 of 7 by Scott Morris
Tuesday, March 02, 2010

Advertisement

Current style of IndyCar design, in a trailing-car wind tunnel setup


The originating intent of the Delta Wing design was to create better racing that allows the drivers to really race, especially at the superspeedways, and be able to trail another car and draw close enough to have the exit speed to pass a car coming out of the turn and heading down the straight.

Being able to really race in traffic, which is a big appeal of the NASCAR variety of racing, is key to the quality of the competition and entertainment value.

In this fourth installment of our 7 part series, we talk about how this car will bring all of that to IndyCar racing, restoring a style of racing that is truly American style and as challenging for the drivers as it is exciting for the fans to watch.

The key to this car design is that nearly all of it's downforce comes from underneath the car. Of course, a lot of the downforce of most open wheel cars comes from the underside of the car. However with the traditional design, the wings also develop a sizable downforce and the two parts (wings and underbody) work together.

The problem with this is that the turbulent air that results from a winged open wheel car greatly reduces the downforce produced by the wings, and the underwing. So it makes it impossible to maintain momentum when drawing up on a car into a turn. The driver has to come out of the throttle because the car loses downforce, and hence traction.

Indy 500 throttle and downforce data from Dario Franchitti's Car, in comparative open track and traffic conditions.
Current design style downforce vs. distance behind leading car
Note the huge drop at about 2 seconds behind another car

Check out this graph that shows Dario Franchitti's throttle position, speed and effective downforce throughout the 2009 Indy 500 . You can see when he is on clear laps, even for an extended period of time, the throttle stays pegged flat at 100%. When he hits traffic, you can see sharp and frequent dips to no pedal at all, which on a track like Indy, should be rarely the case. These throttle dips were because Dario had to get out of the throttle simply because there was no grip behind another car, and you can see the downforce number dip as well as the speed.

The next graph shows the data from the 2009 Indy 500 for reduction in downforce and its relationship to the distance behind a leading car. First of all, note the significantly lower downforce on the left side of the graph, at the shorter time intervals between cars. Amazingly, look at the spot where it take a huge downward spike at about 2 seconds. It's almost as if someone threw a car cover over the car.

The recurring remarks on the radio and in the post-race briefing had the drivers saying that they had a very tough time even passing cars that were much slower. Well, that is clearly a problem that needed to be solved.

Telemetry data indicated that Dario was experiencing a loss of downforce of as much as 38%. This is a huge amount when considering that a car cornering at the limit only needs the lightest tap to send it into chaos. So it not an issue of the driver just braving  it into the corner.

Jackie Chiles, the lawyer in a number of Seinfeld episodes would say "If the car won't grip, it just won't grip and the speed has to dip."

Much effort and study was dedicated to this problem. Check out the opening image of the two current-style cars in the wind tunnel above. Nobody had ever done this before.

Many other issues arose in trying to quantify this effect, and then produce a solution. Unlike many other aerodynamic problems, this proved to be very difficult to test in a wind tunnel with a moving ground plane, as there were none that could fit two cars.

CFD and other simulation methods also proved to significantly overestimate downforce loss, which is something to keep in mind as we move on...

After all of this, it became obvious that some kind of departure in design would be required. So the new design was born out of seeking the only apparent path to a real solution.

The first thing that had to be addressed was the turbulence that a rotating wheel out in the middle of the airflow creates. Limiting that by covering most the wheels, and sending the air over the majority of that rotating surface, was a huge step forward.

Secondly, eliminating the wings altogether was the next step, followed by creating a huge low pressure zone under the car, which sucks the car to the ground. This ground effect is not dependent on airflow from wings, because there are none. There is some downforce created by the nose and body shape, but is a cleaner airflow.

With all of the downforce being created under the car, and a very slick body shape, the overall drag of the car is dramatically lowered, and the trailing airflow behind the car is cleaned up immensely. Since the trailing car is not depending on airflow to the wings to make downforce, the overall loss is also greatly reduced.

Delta Wings
Nose to tail CFD simulation - top and bottom
Check out the CFD illustrations with one Delta Wings trailing another. The brighter red colors are the higher pressure areas, indicating the downforce generated. There is very little difference between the downforce on the leading car and the trailing vehicle. In fact, Ben tells us that the loss they are seeing in the CFD simulations is about 12.5%, which is a groundbreaking result. The most interesting part, is that the CFD simulations tend to overestimate the downforce loss vs. the real world loss by as much as 20%. So that means the real world expectation could put downforce losses at less than 10% overall for the Delta Wing design.

In fact, Ben Bowlby tells us that they are seeking to actually have no loss of downforce at all when trailing behind another car, and he sounds pretty confident about that goal. He also added that with a slight offset in the line of the trailing car, it is possible that the trailing car could have an increase in downforce.

There is one other interesting factor that ties into one of our previous installments. This is that the body shape with the narrow front and wider rear, presents a very efficient shape to the oncoming airflow. Interestingly, the bull-nosed leading edge tends to create downforce at higher yaw rates as well. So in theory, the driver could hang the car out quite a bit behind another car, and actually get some of that lost downforce back by offsetting the racing line a bit, and allowing that bodywork to create downforce that could exceed that of the leading car. That might be wishful thinking, but is a great goal to work toward.

What does this mean to you the fan, watching the race from the stands or on TV? Well, you will see a trailing driver being able to get right up on the tail into the turn, and moving to a slightly offset line, hanging the tail out and actually gaining grip and picking up speed, and then carrying that through the turn and making a pass in the turn itself, or coming off the corner.

Now, all first impressions aside, isn't that what we need in this sport?

If this is starting to sway your opinion, wait until you read our next installment that will detail the advantages of an active differential. Mario Andretti really loves that part.

Feedback can be sent to feedback@autoracing1.com

Go to our forums to discuss this article